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A FAMILY OF ALMOST CIRCULAR ORBITS IN THE INNER VERSION OF THE
CIRCULAR THREE-BODY PROBLEM"

V.P. YEVTEYEV

A class of periodic orbits in the classical restricted three-body problem
is determined. A version of the small-parameter method is used. The
convergence of the solutions obtained is proved and their domain of
convergence is shown.

1. Formulation of the problem. 1Iet a material point P, of mass m, roatate with
constant angular velocity n round a circular Keplerian orbit about a point P, of mass m;. We
take the point P; as the origin of the rectangular O0XYZ system of coordinates. We take the
plane of the orbit of point P, as the basic coordinate XO0Y plane, and the straight line
POP, as the 0X axis. We choose the positive direction of the O0Y axis so that the averaged
motion is positive.

Now let a passively gravitating third body P rotate about P,. Then its equations of
motion will be written as /1/

oU aU ol

X"—ZnY'~n2X=W, Y"——?.nX—n2Y=7Y—, Z":—bT (1.1
my my n2mi XoX
U=f ( R T & ) mg 4 m

Rl=X*4- Y2+ 2% R?=(X — X2+ Y?+ 2%
(X, is the abscissa of the point P, and f is the gravitational constant).
Expanding R, in powers of X/X, and making the substitution /2/
X=o0z, Y=ay, Z=az t=kt/yim

with the assumption that
k=02 (kg +aky+-..), n/Vimi=a " (ng+an +...)

we reduce system (1.1) to the form

ko2z au

2" — 2konoy’ — ko?no?z - 5+ aF= O"W (1.2)
ko3 U
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where
Fi=Ay + B+ Pz, Fo=—A2 +B+py, Fy=1y
2k
A =2 (Kony + Eng), B =2 (kkng? + knony), ¥ = — %‘
el moko? N U o
T T T mr YOG Gy =0, =0

2. Proof of the existence of periodic solutions. Let us change to new variables

using the relations
z = pcos (v — kongT), y = psin (v — kynet), 2z =7

Then system (1.2) can be rewritten in the form

. e, B2 au ,
P —p WP o aFy =2t 5 (2.1)
a 4 ot 24
T W) FaFr=ed U S (b= at T

When « =0, the system admits of a particular solution p=1,v= ke, (=0 which determines

the circular Keplerian motion of a passively gravitating material point.
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Let us introduce the new unknown functions

p=14¢ v=n+kt, L=¢E
for which system (2.1) will have the form

i ; ot
B = (L&) (kg -£ ) — —5— (1 +8) — @F1 + a® 3¢~ aa (2.2)
. 2(ky )8 rfl"z o? 0U
W= tTTo FOTE o

kg2 aUu
;":4,«—.‘;‘:"\‘“[’3"'“2 3

We shall seek the solution of the last system in the form of series in powers of the
small parameter

Let us substitute (2.3) into (2.2) and equate terms accompanving the like powers of «
on the right-hand and left-hand sides of the last system of equations. Now let keny + kng = koky.
Then the general solution of the system of equations for &, m, § will have the form

%, = Py cos kT -+ B, sin kyt + B3 - apy cos kgnyT

My = —2B1keT + 23 €08 Byt + bgyT + by sin kgnyt + Po
2y = By cos kot + B cos kot
ko? (ny + D 3
G = 7o (g — 1) (ng— 2) ng * b01=-2—k0ﬁ3
o B S Gl s Rl B G Rl R

bu= 2 (ng — 1) [ 2k~ 2(ng— 1) (ny—2) ny
(By...Ps are arbitrary constants of integration). We shall assume that n»,= p/g 1is not an
integer (p,q¢= -+1,+2,...). Then the right-hand sides of the system of Egs.(2.2) will be

periodic functions with period 7T = 2ak,™q.
We shall require that the following conditions hold:

Y=E(T)—EO0) =0, =8 (1) —E(0)=0, $g=n(T)—
n(0)=0
Y= ()= (=0, P;=L(7N— L0 =0, = ' (T) —
=0
from which we can find B,,..., Bs as single-valued functions of a. Then §, 1, will be

periodic functions with a common period T. The conditions of periodicity for system (2.2) will

take the form
Yi/a = Py cos kT — Py + P sin koT -+ ayg cos kT + O (a) =0 (2.4)
Pola = —koPy sin koT + koB, cos kT — koPy + apkony sin kgny 7 +
0 (a) =0, Pyfa = —2p, sin koI -+ 2B, cos keT — 2B, +
boy 8in kery T 4 O () = 0,
P/ = By cos kyT — By + Bs 8in kg7 - O (a) =0,
Pe/ot = —koBs 8in kT + kof €08 kgT — kofs + O () =0,
Yo/a = —2, cos koT - 2Pk — 2B, sin koT ~— byikony cos kony T -
bygkony + O (@) =0

Using the fact that the Jacobi integral exists for system (2.2), we can express Bs in

terms of Py, ..., Bg. Therefore we can discard the last equation of (2.4). For the remaining
five equations we have the Jacocbian
D (Y1, V2, Vay V5, Va) 24n N
sin ]

DBr....Bs)  kolng—1) no
which leads to the following theorem.

Theorem 1. 1If k, is a real number different from zero ngk + kegny = koky and the quantities
ne=plg and g¢/(p —g) are not integers (p, ¢= +1, +2,...), then system (2.2) has a formal solution
in the form of series (2.3) with period T = 2nk,™q.

The convergence of the solutions (2.3) can be proved using the mqthod of majorants /3/.
Let us rewrite svstem (2.2) in the form

dugldt = fx (g, « + o U4er @), k=1,...,86 (2.5)

assuming that &= uj, & = ug, = g, V' = uay, &= t3, ' = ue.
We have
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, . , 0% -
u'=u, (0=1,3,5), u'=(1+4k) (ko—l-ua)"-i-faTl1 (2.6)
. Zug(kytuy) ox , 9%
W=yt gy w =g
my | omy 1 1
=R VR, 0 Re T ANX, ALzae
0 0 A7 Xy (14-2/4)"

2
4 =12 cos (ko) T+ ) + (- )

o\ o o
z= (E) (U1? 4 us?) -+ 2 X, (-— co8 (kg (np— 1) T 4~ no) —|—TO-) iy

1 1 . i
o :7(1 2wy - u® v

Let 8<<1 and |u; | <6, jus| <6, a/Xe<<%. Then

1 5 9 25
lzl<g®+5d —T[E<A<TF

From this it follows that the function 1/R, will be regular, provided that the following
inequality holds:

26% 4+ 106 — 9 <0

Thus if

Vi —5 Va—35 o 1
2 2

lul < v | < v T <7

then the function 1/R, is regular. We shall prove the requarity of (/R and 2u (kg + u/(1 -+ up
in the same manner and under the same conditions.
This leads to the following theorem.

Theorem 2. If in the region

D={lui| <Yy i=1,...6, a/Xe< Yy ko<1}
then the right-hand sides of (2.6) will be analvtic functions bounded uniformly in .
We have, in the region D, the inequalities 1 filay e v ugy) | <N, i=1,...,6, N =%, +[1+f

(mg + m))/(7X,), and this proves the theorem.

In order to prove the convergence of the series (2.3), we use the Cauchv theorem /4, p.45/.
We expand each function f; (u;, ..., us @) (E=1,...,6)in series. Since |u;| «VY,, we obtain from
the Cauchy theorem

1 aintethef (gL ug, &)

. ig! OMuy ... 9ug

1 ik, g
<(z)

Therefore a power series of special tvpe, independent of

6

{
g g =N ] (1—u,)?

k=1
will be a majorant for any of the series f; (uy, ..., ug @).
Since the right-hand sides of the equations
g’ =g yk(t)=1by (k=1,...,6) (by= const)
are independent of k, it follows that their solutions y; (1) are given by a single power series
y =y {1) satisfying the equation
¥ =N —y2)8 y(To) = by
A straightforward integration vields
y=2—2(— T3, b= (1 — by/2)7 + TNT,/2
The corresponding series converges when |7t|<2b/7N. Under the same conditions Ju;(t| will

be even more convergent, and this proves the convergence.
Finally we obtain the following theorem.

Theorem 3. If |t|<(20/TN, then series (2.3) converge absolutelv in the region D . The
functions represented by these series are the solution of system (2.2).
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A METHOD OF CONSTRUCTING POLHODES OF AN INTERMEDIATE MOTION IN THE
DYNAMICS OF A RIGID BODY

V.A. KURYAKOV

Asymptotic methods are used to construct the polhodes of an intermediate
motion of a non-symmetric body about its centre of mass. The fundamental

effects of thigs motion are governed bv the action of +the gmall external
....... this moticon are governed py tne action ¢f the smali exXternal

resistance of the medium, linear with respect to the angular velocity
of rotation Non-Eulerian motion is employed to construct the equations

AAAAAAAAAAAAAAAAAAAA

cocntlating variahlaoa AN Al Fimardan ~AF +lhaa
in osculating variables. A modification of the averaging procedure is
proposed which makes it possible to obtain finite expressions for the
polhodes of the intermediate motion. Results of the analyvsis of the

mEkarmadd ste metd on .

intermediate motion and of the evolution

rotation of the bodv are given.
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1. we consider the problem of the rapid motion of a non-symmetric rigid bodv about its
centre of mass, whose basic effects are governed by the action due to the resistance of the
surrounding medium, which is linear with respect to the angular velocitv. Following /1/, we
shall call the motions rapid, if the moment of external forces about a fixed point is small
compared with the current value of the kinetic energy of rotation. We shall write the dynamic
Euler equations, taking into account the specific features of the motion described earlier,

in the form e i o [ s ioan P
Ap® -+ (C — B) gr = ¢ M, (pgr, ABC, 123) {1.1)
Here p,q,r are the projections of the angular velocity vector ® onto the coordinate axes,
A, B, C are the principal central moments of inertia of the body, ¢ is a small non-negative
parameter, and M;(i=1,2,3) are the components of the perturbing moment M where M= —Jo, 7
is the matrix of the constant coefficients /2/ of resistance I;; in associagted axes (i, j=1,2,
3). Henceforth we shall assume that A >B>C.
When studying the evolution of rapid motions of a rigid body about the centre of mass,
we normally use the Euler-Poinsot motion as the generating motion obtained from Egs. {1.1) for
g= 0, and we apply the method of varving the arbitrary Lagrange constants /1-5/ (of the
generating solution). At the same time, the universal character of the Lagrange's method /5/
which can be used when choosing the unperturbed motion arbitrarily, makes it possible to carrv

out the investi gation using motions resembling that described by Egs. (1.1) more Closelv than

investligation usin meoticons resembling Tnat AesCribeld DY kds

the Eulerian motion. Such motions, which were first encountered in classical celestial
mechanics, have become particularly valuable in connection with constructing the theory of the

moticn of artificial celestial bodies, and are called intermediate motions, while the correspond-

ing trajectories are called intermediate orbits /3, 5, 5/.
The problem of constructing the trajectories (polhodes and herpolhodes) of the intermediate

motion of a rigid body was discussed in /3/ The method involves taking into account the most

moticn & rigld Doy was dlscussed 1n /3. taking

significant special features of the rotational motion in such a manner that the corresponding
equations can be integrated in closed form. The present paper gives a method of constructing

the polhodes of the intermediate motion, taking into account the small forces opposing the

rotation of the body.




