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A FAMILY OF ALMOST CIRCULAR ORBITS IN THE INNER VERSION OF THE 
CIRCULAR THREE-BODY PROBLEM* 

V.P. YEVTEYEV 

A class of periodic orbits in the classical restricted three-body problem 

is determined. A version of the small-parameter method is used. The 

convergence of the solutions obtained is proved and their domain of 

convergence is shown. 

1. Formulation of the problem. Let a material point P, of mass m0 roatate with 

constant angular velocity n round a circular Keplerian orbit about a point PI of mass [II,. We 

take the point PI as the origin of the rectangular OXYZ system of coordinates. We take the 

plane of the orbit of point P, as the basic coordinate XOY plane, and the straight line 

PIOR, as the OX axis. We choose the positive direction of the OY axis so that the averaged 

motion is positive. 
Now let a passively gravitating third body P rotate about PO. Then its equations of 

motion will be written as /l/ 

au 
X"-22nY'-nn2X=,x, 

au 
Y" - 3ll.y - n2Y = F, 

au Z” = z (1.1) 

~=+L+~)+2$5$ 

Ra = X2 + Y* + Z*, Roe = (X - .Y,)2 + Y2 f Z* 

(X0 is the abscissa of the point P, and f is the gravitational constant). 

Expanding R, in powers of XIX, and making the substitution /2/ 

x = az, Y = ay, z = az, t = kT/l/fTl 

with the assumption that 

k=aa’~(k,+ak,+...), n/v fm1= &jr (na + aq+. . .) 

we reduce system (1.1) to the form 

k,,=z au 
5” - 2k.noy’ - k&,=x + 7 + aF,= a’= 

k4y 
y’ + 2kan& - k,%,‘y + rl + aF, = rl* + 

k,,% au 
z’+r,+aF’a=a’~ 

(1.2) 

where 
F, = AY' + (B + x) 5, F, = -.4x' + (B + x) II, F, = xz 

A = 2 (k,nl+ klid, B = 2 (kuk& + l$non~), 
2!& 

x=- 
r3 

~z__!!.LO(CL), 
au 

x ==O(N, g = 0 (CL) 

2. Proof of the existence of periodic solutions. Let us change to new variables 

using the relations 
z = p cos (c - k,n,T), y = p sin (1’ - Iron&, z = : 

Then system (1.2) can be rewritten in the form 

When a=O, the system admits of a particular solution (I= l,v= k,s,; =0 which determines 

the circular Keplerian motion of a passively gravitating material point. 
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Let us introduce the new unknown functions 

p=1+5> u = 9 + kgr, r,=S 

for which system (2.1) will have the form 

5”=(l;e)ik,~i’ll)-~(1+~)-a~1+ca~ 

11” = 
2 (k” + 11’) 5’ aF, aa dlJ 

__ 
I -; 5 +FT+ (Ii_<)2 d,, 

I x, dlJ 
=- r? .i- aF,-(-a2 - 

3; 

We shall seek the solution of the last system in the form of series in powers of the 

small parameter 

(2.2) 

(2.3) 

Let us substitute (2.3) into (2.2) and equate terms accompanying the like powers of a 

on the right-hand and left-hand sides of the last system of equations. Now let kOn, + k,n, = k,k,. 

Then the general solution of the system of equations for &.Q,& will have the form 

kc,= in,) + 1) 3 
an= su=(llg-l)(n,--~)n~ ' h= yj-koPa 

b 1 
bu = 

(~,,a -+ 211, -- 7) (n,,f 1) k, 
Z”2 (110 - 1) x- :! (no- 1) (n, - 2) n, 1 

(PI . . . PB are arbitrary constants of integration). We shall assume that n, = p/q is not an 

inteqer (p, q = ‘_I, i-2, . .) . Then the right-hand sides of the system of Eqs.(2.2) will be 

periodic functions with period T= 2nk,-‘q. 

We shall require that the followinq conditions hold: 

*I = 5 (T) - 5 (0) ES 0, q2 = 5’ (T) - E’ (0) = 0, ‘$3 = rl (T) - 
q (0) Ez 0 

& = vf (T) - vf (01 GE 0, qr = i (T) - : (0) F 0, Qe = 5’ (T) - 

5’ (0) ES 0 

from which we can find p,,...,l& as single-valued functions of a. Then 4,~ F will be 

periodic functions with a common period T. The conditions of periodicity for system (2.2) will 

take the form 

$,/a = Lk,fi, sin k,T + k,fi, cm k,T - k&, $ atlk,n, sin k&T + 
0 (a) 3 0, qz/a = -28, sin k,T + 26, cos k,T - 2b2 + 
b,, sin kenIT + 0 (a) 3 0. 

qS/a = f& eos k,T - p, $ b6 sin k,T + 0 (a) s 0, 

&/a = --k& sin k,T + k,j3, cm k,T - k&, + 0 (a) s 0, 

QJa = -2& cm k,T f 2fi,k, - 2fi2 sin k,T - bllk,n, cos k,n,T f 

b,,k,nl + 0 (a) G 0 

Using the fact that the Jacobi integral exists for system (2.2), we can express fiI in 
terms of PI,..., ps. Therefore we can discard the last equation of (2.4) _ For the remaining 

five equations we have the Jacobian 

which leads to the following theorem. 

Theorem 1. If k, is a real number different from zero n,k, + k,n, = k,k, and the quantities 

no = P/4 and q/(p - q) are not integers (p,~ = +1,+2,.. .), then system (2.2) has a formal solution 

in the form of series (2.3) with period T= 2nk0-‘q. 

The convergence of the solutions (2.3) can be proved using the method of majorants /3/. 

Let us rewrite system (2.2) in the form / 

dukidr = fk (f+. . . ., uB, a), k = 1, . . ., 6 (2.5) 

assuming that E = ur, E' = up, 9 = uQ, q' = ~4, 5 = Us, C,' = ~6. 
we have 
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(2.6) 

Let 6<1 and Iu,I<6,Iu,1<6,a/X,<'/,. Then 

,z,<&52+;s, &l& 

From this it follows that the function UR, will be regular, provided that the following 

inequality holds: 
262 + 106 - 9 <o 

Thus if 

then the function l/R, is reqular. We shall prove the requarity of 
in the same manner and under the same conditions. 

This leads to the followinq theorem. 

Theorem 2. If in the region 

D = (I u, 1 <I/%, i = 1, . . ., 6, a/X, <1/1, k, < 1) 

l/R and 2u, (k, + Q/(1 + llli 

then the right-hand sides of (2.6) will be analytic functions bounded uniformly in r. 

We have, in the region D, the inequalities I fL (q. . . .I +.,a)1 <N, i=l,...,6, N ="i,-r[l+f 

(m0 + ~~d147Xo) , and this proves the theorem. 

In order to prove the convergenceofthe series (2.3), we use the Cauchy theorem /4, p-45/. 

We expand each function f,(~,....,U~.a)(i= 1,...,6) in series. Since ( LL,I <1/I, we obtain from 
the Cauchy theorem 

Therefore a power series of special type, independent of 

will be a majorant for any of the series fi (49 . . ., 4, a). 

Since the right-hand sides of the equations 

gh-' = 6 (y), yk (to) = b, (k = 1, ., 6) (b, = con&) 

are independent of k, it follows that their solutions yh.(t) are given by a single power series 
y = y(r) satisfying the equation 

y' = .v (1 - y/2)-8, y (~1 = b, 

A straightforward integration yields 

y = 2 - 2 (6 - 7.\-ri2)", 6 = (1 - 0,/2)' + i.Yt,/Z 

The corresponding series converges when /rI<2b/iS. Under the same conditions ] U~(T 1 will 
be even more convergent, and this proves the convergence. 

Finally we obtain the following theorem. 

Theorem 3. If 1 T 1 <2b/7N, then series (2.3) converge absolutely in the region 0. The 
functions represented by these series are the solution of system (2.2). 
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A METHOD OF CONSTRUCTING POLHODES OF AN INTERMEDIATE MOTION IN THE 
DYNAMICS OF A RIGID BODY* 

V.A. KURYAKOV 

Asymptotic methods are used to construct the polhodes of an intermediate 

motion of a non-symmetric body about its centre of mass. The fundamental 
effects of this motion are governed by the action of the small external 

resistance of the medium, linear with respect to the angular velocity 
of rotation. Non-Eulerian motion is employed to construct the equations 

in osculating variables. A modification of the averaging procedure is 

proposed which makes it possible to obtain finite expressions for the 

polhodes of the intermediate motion. Results of the analysis of the 
intermediate motion and of the evolution of the polhodes of an Eulerian 
rotation of the body are given. 

1. We consider the problem of the rapid motion of a non-slymmetric rigid body about its 

centre of mass, whose basic effects are governed by the action due to the resistance of the 

surrounding medium, which is linear with respect to the angular velocity. Following /l/, we 
shall call the motions rapid, if the moment of external forces about a fixed point is small 

compared with the current value of the kinetic energy of rotation. We shall write the dynamic 
Euler equations, taking into account the soecific features of the motion described earlier, 

in the form 
Ap' + (C - B)qr = e.ll, (pqr, ABC, 123) (1.1) 

Here p,q,~ are the projections of the angular velocity vector o onto the coordinate axes, 

A,B,C are the principal central moments of inertia of the body, E is a small non-negative 

parameter, and Mi(i= 1,2,3) are the components of the perturbing moment M where M = -IO, I 

is the matrix of the constant coefficients /2/ of resistance Iij in associated axes (i, j = 1,2, 

3). Henceforth we shall assume that A>B>C. 
When studying the evolution of rapid motions of a rigid body about the centre of mass, 

we normally use the Euler-Poinsot motion as the generating motion obtained from Eqs.(l.l) for 
E = 0, and we apply the method of varying the arbitrary Lagrange constants /l-S/ (of the 
generating solution). At the same time, the universal character of the Lagrange's method /5/ 

which can be used when choosing the unperturbed motion arbitrarily, makes it possible to carry 

out the investigation using motions resembling that described by Eqs.(l.l) more closely than 
the Eulerian motion. Such motions, which were first encountered in classical celestial 

mechanics, have become particularly valuable in connection with constructing the theory of the 

motion of artificial celestial bodies, and are called intermediate motions,whilethecorrespond- 

ing trajectories are called intermediate orbits /3, 5, 5/. 
The problem of constructing the trajectories (polhodes and herpolhodes) of the intermediate 

motion of a rigid body was discussed in /3/. The method involves taking into account the most 

significant special features of the rotational motion in such a manner that the corresponding 

equations can be integrated in closed form. The present paper gives a method of constructing 

the polhodes of the intermediate motion, taking into account the small forces opposing the 

rotation of the body. 
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